Human-mouse gene identification by comparative evidence integration and evolutionary analysis.
نویسندگان
چکیده
The identification of genes in the human genome remains a challenge, as the actual predictions appear to disagree tremendously and vary dramatically on the basis of the specific gene-finding methodology used. Because the pattern of conservation in coding regions is expected to be different from intronic or intergenic regions, a comparative computational analysis can lead, in principle, to an improved computational identification of genes in the human genome by using a reference, such as mouse genome. However, this comparative methodology critically depends on three important factors: (1) the selection of the most appropriate reference genome. In particular, it is not clear whether the mouse is at the correct evolutionary distance from the human to provide sufficiently distinctive conservation levels in different genomic regions, (2) the selection of comparative features that provide the most benefit to gene recognition, and (3) the selection of evidence integration architecture that effectively interprets the comparative features. We address the first question by a novel evolutionary analysis that allows us to explicitly correlate the performance of the gene recognition system with the evolutionary distance (time) between the two genomes. Our simulation results indicate that there is a wide range of reference genomes at different evolutionary time points that appear to deliver reasonable comparative prediction of human genes. In particular, the evolutionary time between human and mouse generally falls in the region of good performance; however, better accuracy might be achieved with a reference genome further than mouse. To address the second question, we propose several natural comparative measures of conservation for identifying exons and exon boundaries. Finally, we experiment with Bayesian networks for the integration of comparative and compositional evidence.
منابع مشابه
I-43: Identification of SOX3 as an XX MaleSex Reversal Gene in Mice and Jumans
Background: Mammals utilise an XX/XY system of sex determination in which the Y-linked gene SRY (Sexdetermining region Y) exerts a dominant masculinising influence on sexual development. Sex chromosome homology and comparative sequence studies suggest that SRY evolved from the related SOX3 gene on the X chromosome, although there is no direct functional evidence to support this hypothesis. The ...
متن کاملPhylogenetic Identification and Functional Characterization of Orthologs and Paralogs across Human, Mouse, Fly, and Worm
Model organisms can serve the biological and medical community by enabling the study of conserved gene families and pathways in experimentally-tractable systems. Their use, however, hinges on the ability to reliably identify evolutionary orthologs and paralogs with high accuracy, which can be a great challenge at both small and large evolutionary distances. Here, we present a phylogenomics-base...
متن کاملComparative Phylogenetic Perspectives on the Evolutionary Relationships in the Brine Shrimp Artemia Leach, 1819 (Crustacea: Anostraca) Based on Secondary Structure of ITS1 Gene
This is the first study on phylogenetic relationships in the genus Artemia Leach, 1819 using the pattern and sequence of secondary structures of internal transcribed spacer 1 (ITS1). Significant intraspecific variation in the secondary structure of ITS1 rRNA was found in Artemia tibetiana. In the phylogenetic tree based on joined primary and secondary structure sequences, Artemia urmiana and pa...
متن کاملI-13: Transcriptome Dynamics of Human and Mouse Preimplantation Embryos Revealed by Single Cell RNA-Sequencing
Background: Mammalian preimplantation development is a complex process involving dramatic changes in the transcriptional architecture. However, it is still unclear about the crucial transcriptional network and key hub genes that regulate the proceeding of preimplantation embryos. Materials and Methods: Through single-cell RNAsequencing (RNA-seq) of both human and mouse preimplantation embryos, ...
متن کاملIdentification of Mycobacterium tuberculosis CTL Epitopes Restricted by HLA-A*0201 in HHD Mice
CD8+ T cells are thought to play an important role in protective immunity to tuberculosis. The major histocompatibility complex class I subtype HLA-A*0201 is one of the most prevalent class I alleles, with a frequency of over 30% in most populations. HLA-A*0201 transgenic, H-2Db/mouse beta2-microglobulin double-knockout mice (HHD) which express human HLA-A*0201 but no mouse class I, was shown t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genome research
دوره 13 6A شماره
صفحات -
تاریخ انتشار 2003